Quantum Coherent Device Physics Group

Developing hardware, algorithms, and control for near-term applications in quantum information, sensing, and computing.

Our research aims to draw from and build a community around intersections in applied mathematics, computer science, quantum information, and device physics to make optimal use of near-term quantum hardware.

Our group has ongoing collaborations with related efforts at LLNL:

  • Microscopic theory and multiscale device modeling
  • Quantum sensing
  • Quantum materials research
  • Microwave photon counting
  • Cryogenic detectors

Learn more about our group by exploring the topics below.

Research

We design solutions to, and explore synergies between, the following research challenges to enable efficient and reliable quantum algorithm development and to inform the quantum hardware co-design process:

  • Gaining insight into conditions for optimal algorithm performance from quantum thermodynamic and quantum geometric information.
  • Developing and applying powerful and scalable high-dimensional minimum-action methods to optimize gate sets and quantum algorithms.
  • Realizing a systematic understanding of methods, limitations, and bounds on performance of passive stabilization of quantum dynamical flows and manifolds.
  • Gaining insight into the instantaneous information content as well as the computational cost associated with extracting information from quantum algorithms as a function of run time.
  • Developing classical machine-learning-based approaches to optimal extraction of quantum resultants.
  • Developing self-consistent criteria for, and faithful read-out methods of, target variables in quantum simulators for verification and validation of simulation results.

Facilities

Our researchers utilize world-class scientific capabilities and modern high-performance computing facilities to support Laboratory programs. Listed below are LLNL’s state-of-the-art capabilities commonly used by our group.

Featured Publications

  • H. Y. Wong, P. Dhillon, K. M. Beck, and Y. J. Rosen, A Simulation Methodology for Superconducting Qubit Readout Fidelity, Solid-State Electronics 201, 108582 (2023).
  • Z. Peng, D. Appelo, N. A. Petersson, F. Garcia, and Y. Cho, Mathematical Approaches for Characterization, Control, Calibration and Validation of a Quantum Computing Device, arXiv:2301.10712 (2023).
  • C.-H. Liu, A. Ballard, D. Olaya, D. R. Schmidt, J. Biesecker, T. Lucas, J. Ullom, S. Patel, O. Rafferty, and A. Opremcak, Single Flux Quantum-Based Digital Control of Superconducting Qubits in a Multi-Chip Module, arXiv:2301.05696 (2023).
  • I. Joseph, Y. Shi, M. Porter, A. Castelli, V. Geyko, F. Graziani, S. Libby, and J. DuBois, Quantum Computing for Fusion Energy Science Applications, Physics of Plasmas 30, 010501 (2023).
  • L. D. Alegria, D. M. Tennant, K. R. Chaves, J. R. Lee, S. R. O’Kelley, Y. J. Rosen, and J. L. DuBois, Two-Level Systems in Nucleated and Non-Nucleated Epitaxial Alpha-Tantalum Films, arXiv:2301.10306 (2023).
  • Q. Yu, A. M. Alonso, J. Caminiti, K. M. Beck, R. T. Sutherland, D. Leibfried, K. J. Rodriguez, M. Dhital, B. Hemmerling, and H. Häffner, Feasibility Study of Quantum Computing Using Trapped Electrons, Phys. Rev. A 105, 022420 (2022).
  • L. Yu, S. Matityahu, Y. J. Rosen, C.-C. Hung, A. Maksymov, A. L. Burin, M. Schechter, and K. D. Osborn, Experimentally Revealing Anomalously Large Dipoles in the Dielectric of a Quantum Circuit, Scientific Reports 12, 16960 (2022).
  • F. Turro, A. Roggero, V. Amitrano, P. Luchi, K. A. Wendt, J. L. DuBois, S. Quaglioni, and F. Pederiva, Imaginary-Time Propagation on a Quantum Chip, Physical Review A 105, 022440 (2022).
  • D. M. Tennant, L. A. Martinez, K. M. Beck, S. R. O’Kelley, C. D. Wilen, R. McDermott, J. L. DuBois, and Y. J. Rosen, Low-Frequency Correlated Charge-Noise Measurements across Multiple Energy Transitions in a Tantalum Transmon, PRX Quantum 3, 030307 (2022).
  • R. T. Sutherland, Q. Yu, K. M. Beck, and H. Häffner, One- and Two-Qubit Gate Infidelities Due to Motional Errors in Trapped Ions and Electrons, Phys. Rev. A 105, 022437 (2022).
  • D.-X. Qu, J. J. Cuozzo, N. E. Teslich, K. G. Ray, Z. Dai, T. T. Li, G. F. Chapline, J. L. DuBois, and E. Rossi, Phase-Slip Lines and Anomalous Josephson Effects in a Tungsten Clusters-Topological Insulator Microbridge, arXiv:2301.00086 (2022).
  • S. Pereverzev, G. Carosi, and V. Li, Superconducting Nanowire Single-Photon Detectors and Effect of Accumulation and Unsteady Releases of Excess Energy in Materials, arXiv:2204.01919, (2022).
  • L. Martinez, Z. Peng, D. Appelö, D. Tennant, N. A. Petersson, J. DuBois, and Y. Rosen, Noise-Specific Beats in the Higher-Level Ramsey Curves of a Transmon Qubit, arXiv:2211.06531 (2022).
  • P. Luchi, P. E. Trevisanutto, A. Roggero, J. L. DuBois, Y. J. Rosen, F. Turro, V. Amitrano, and F. Pederiva, Enhancing Qubit Readout with Autoencoders, arXiv:2212.00080 (2022).
  • A. J. Goldschmidt, J. L. DuBois, S. L. Brunton, and J. N. Kutz, Model Predictive Control for Robust Quantum State Preparation, Quantum 6, 837 (2022).
  • H. Dhillon, Y. J. Rosen, K. Beck, and H. Y. Wong, Simulation of Single-Shot Qubit Readout of a 2-Qubit Superconducting System with Noise Analysis, IEEE (2022).
  • Y. Cho, D. Jasrasaria, K. G. Ray, D. M. Tennant, V. Lordi, J. L. DuBois, and Y. J. Rosen, Simulating Noise on a Quantum Processor: Interactions between a Qubit and Resonant Two-Level System Bath, arXiv:2211.08535 (2022).
  • BREAD Collaboration et al., Broadband Solenoidal Haloscope for Terahertz Axion Detection, Phys. Rev. Lett. 128, 131801 (2022).
  • T. Braine, G. Rybka, A. A. Baker, J. Brodsky, G. Carosi, N. Du, N. Woollett, S. Knirck, and M. Jones, Multi-Mode Analysis of Surface Losses in a Superconducting Microwave Resonator in High Magnetic Fields, arXiv:2208.11799, 2022.
  • C. D. Wilen, et al, Correlated Charge Noise and Relaxation Errors in Superconducting Qubits, Nature 594, 7863 (2021).
  • H. Wang, S. Singh, C. McRae, J. Bardin, S. Lin, N. Messaoudi, A. Castelli, Y. Rosen, E. Holland, and D. Pappas, Cryogenic Single-Port Calibration for Superconducting Microwave Resonator Measurements, Quantum Science and Technology 6, 035015 (2021).
  • N. A. Paterson, D. Appelo, J. L. DuBois, Y. J. Rosen, K. M. Beck, and K. A. Wendt, Optimal Control of Coupled Quantum Systems Using Super-Computing Resources, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2021.
  • Y. Shi, A. R. Castelli, X. Wu, I. Joseph, V. Geyko, F. R. Graziani, S. B. Libby, J. B. Parker, Y. J. Rosen, and L. A. Martinez, Simulating Non-Native Cubic Interactions on Noisy Quantum Machines, Physical Review A 103, 062608 (2021).
  • Y. Rosen, L. Martinez, K. M Beck, S. Quaglioni, and J. L DuBois, Quantum Workforce Development at Lawrence Livermore National Laboratory, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2021.
  • Y. Rosen, K. Beck, K. Chaves, Y. Cho, G. Carosi, J. L DuBois, J. Harke, S. Libby, V. Lordi, and N. Petersson, Request for Information: Access to Quantum Systems, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2021.
  • N. A. Petersson, S. Guenther, and J. Dubois, Quandary: An Open-Source Package for High-Performance Optimal Control of Open Quantum Systems, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2021.
  • M. Molina-Ruiz, Y. Rosen, H. Jacks, M. Abernathy, T. Metcalf, X. Liu, J. DuBois, and F. Hellman, Origin of Mechanical and Dielectric Losses from Two-Level Systems in Amorphous Silicon, Physical Review Materials 5, 035601 (2021).
  • S. Günther, N. A. Petersson, and J. L. DuBois, Quantum Optimal Control for Pure-State Preparation Using One Initial State, AVS Quantum Science 3, 043801 (2021).
  • S. Günther, N. A. Petersson, and J. L. DuBois, Quandary: An Open-Source C++ Package for High-Performance Optimal Control of Open Quantum Systems, IEEE (2021).
  • A. Goldschmidt, E. Kaiser, J. L. Dubois, S. L. Brunton, and J. N. Kutz, Bilinear Dynamic Mode Decomposition for Quantum Control, New Journal of Physics 23, 033035 (2021).
  • K. R. Chaves, X. Wu, Y. J. Rosen, and J. L. DuBois, Nonlinear Signal Distortion Corrections through Quantum Sensing, Applied Physics Letters 118, 014001 (2021).
  • K. Beck, Y. Rosen, J. DuBois, S. Quaglioni, and K. Wendt, White Box Access to Quantum Testbeds for Co-Design, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2021.
  • X. Wu, S. L. Tomarken, N. A. Petersson, L. A. Martinez, Y. J. Rosen, and J. L. DuBois, High-Fidelity Software-Defined Quantum Logic on a Superconducting Qudit, Physical Review Letters 125, 170502 (2020).
  • J. E. Sharping, J. Pate, J. Parker, J. J. Thompson, L. A. Martinez, A. R. Castelli, and R. Y. Chiao, Joints and Shape Imperfections in High-Q 3D SRF Cavities for RF Optomechanics, Journal of Applied Physics 128, (2020).
  • Y. Rosen, J. Dubois, E. T. Holland, and M. A. Horsley, Quantum Coherent Devices with Reduced Energy Dissipation (2020).
  • L. A. Martinez, Y. J. Rosen, and J. L. DuBois, Improving Qubit Readout with Hidden Markov Models, Physical Review A 102, 062426 (2020).
  • E. T. Holland, K. A. Wendt, K. Kravvaris, X. Wu, W. E. Ormand, J. L. DuBois, S. Quaglioni, and F. Pederiva, Optimal Control for the Quantum Simulation of Nuclear Dynamics, Physical Review A 101, 062307 (2020).
  • J. DuBois, V. Lordi, Y. Rosen, and X. Wu, Request for the Establishment of Quantum Information Foundries, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2020.
  • A. Agrawal, D. Bowring, R. Bunker, L. Cardani, G. Carosi, C. Chang15, M. Cecchin, A. Chou, G. D’Imperio, and A. Dixit, Coupling Experiment and Simulation to Model Non-Equilibrium Quasiparticle Dynamics in Superconductors (2020).
  • Y. J. Rosen, M. A. Horsley, S. E. Harrison, E. T. Holland, A. S. Chang, T. Bond, and J. L. DuBois, Protecting Superconducting Qubits from Phonon Mediated Decay, Applied Physics Letters 114, 202601 (2019).
  • E. H. Lock, P. Xu, T. Kohler, L. Camacho, J. Prestigiacomo, Y. J. Rosen, and K. D. Osborn, Using Surface Engineering to Modulate Superconducting Coplanar Microwave Resonator Performance, IEEE Transactions on Applied Superconductivity 29, 1 (2019).
  • V. Geyko, Using Grover’s Search Algorithm to Test a Three-Level Quantum Syste, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2019.
  • B. Christensen, C. Wilen, A. Opremcak, J. Nelson, F. Schlenker, C. Zimonick, L. Faoro, L. Ioffe, Y. Rosen, and J. DuBois, Anomalous Charge Noise in Superconducting Qubits, Physical Review B 100, 140503 (2019).
  • D.-X. Qu, N. E. Teslich, Z. Dai, G. F. Chapline, T. Schenkel, S. R. Durham, and J. Dubois, Onset of a Two-Dimensional Superconducting Phase in a Topological-Insulator–Normal-Metal Bi 1− x Sb x/Pt Junction Fabricated by Ion-Beam Techniques, Physical Review Letters 121, 037001 (2018).
  • D.-X. Qu, X. Che, X. Kou, L. Pan, J. Crowhurst, M. R. Armstrong, J. Dubois, K. L. Wang, and G. F. Chapline, Anomalous Helicity-Dependent Photocurrent in the Topological Insulator (Bi 0.5 Sb 0.5) 2 Te 3 on a GaAs Substrate, Physical Review B 97, 045308 (2018).
  • E. H. Lock, P. Xu, T. Kohler, Y. Rosen, A. Ramanayaka, and K. D. Osborn, Effect of Chemical and Plasma Functionalization on the Performance of Microwave Resonators, IEEE (2017).
  • E. T. Holland, Y. J. Rosen, N. Materise, N. Woollett, T. Voisin, Y. M. Wang, S. G. Torres, J. Mireles, G. Carosi, and J. L. DuBois, High-Kinetic Inductance Additive Manufactured Superconducting Microwave Cavity, Applied Physics Letters 111, 202602 (2017).
  • J. C. Corbo, J. L. DuBois, and K. B. Whaley, Number-Squeezed and Fragmented States of Strongly Interacting Bosons in a Double Well, Physical Review A 96, 053627 (2017).
  • N. Adelstein, D. Lee, J. L. DuBois, K. G. Ray, J. B. Varley, and V. Lordi, Magnetic Stability of Oxygen Defects on the SiO2 Surface, AIP Advances 7, 025110 (2017).
  • Y. J. Rosen, M. S. Khalil, A. L. Burin, and K. D. Osborn, Random-Defect Laser: Manipulating Lossy Two-Level Systems to Produce a Circuit with Coherent Gain, Physical Review Letters 116, 163601 (2016).
  • D. Lee, J. L. DuBois, and V. Lordi, Identification of the Local Sources of Paramagnetic Noise in Superconducting Qubit Devices Fabricated on Α− Al 2 O 3 Substrates Using Density-Functional Calculations, Physical Review Letters 112, 017001 (2014).
Rosen, Yaniv Jacob
Alegria, Loren Daniel Hufty
Loren Alegria
Beck, Kristi
Castelli, Alessandro Roberto
Alessandro Castelli
Chaves, Kevin Reis
Kevin Chaves
Cho, Yujin
Iaia, Vito Mariano
Vito Iaia
Martinez, Luis
O'Kelley, Sean Robert